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The rate at which a long bubble rises 
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As a viscous fluid in a vertical tube drains under the effect of gravity, a finger of air 
rises in the tube. The shape of the interface and the rate at which the finger rises 
is determined numerically for different values of the dimensionless parameter 
G = pgb2/T, where p is the density difference between the viscous fluid and the air, 
b is the radius of the tube, and T is the interfacial tension. A relationship between 
the Bond number G and the capillary number Ca = p U / T  is found and compared with 
the perturbation result of Bretherton (1961), where p is the viscosity of the fluid and 
U is the constant velocity at which the finger rises. The numerical results support 
Bretherton’s conclusions for very small values of Cu and extend the relationship 
between G and Ca to a region where the perturbation expansion is no longer valid. 
The results are also valid for long bubbles rising in a tube. 

1. Introduction 
Consider the motion of a long bubble rising steadily in a vertical tube, with small 

radius b, filled with a viscous fluid of viscosity p. As discussed in Bretherton (1961) 
and Batchelor (1967), the shape of the cap and base of a long bubble in a tube are 
independent of the size of the bubble. Only the midsection of the bubble which is 
approximately cylindrical with radius /3b lengthens as the volume of the bubble is 
increased. The rate at which the bubble rises also remains unchanged. For this reason, 
we approximate the rate at which a long bubble rises in a vertical tube by examining 
the limiting case in which a vertical tube is sealed at one end and filled with a viscous 
fluid that drains out of the lower end. As the fluid drains, a finger of air rises 
axisymmetrically up the tube under the effect of gravity g with a constant velocity U 
(see figure 1). We assume that the viscosity of the fluid inside the finger is small in 
comparison with p and can therefore be neglected. 

There are three important dimensionless parameters in the problem : the capillary 
number Ca = p U / T  which gives the ratio of the viscous force to the force of surface 
tension, the Bond number G = pgb2/T which is the ratio of the force of gravity to 
interfacial tension, and /3 which gives the ratio of the radius of the finger to the radius 
of the tube. Here, p is the density difference between the viscous fluid and the air 
and T is the interfacial tension. On dimensional grounds, the capillary number Cu 
and thus the speed U at which the finger rises is a function of G. It is assumed that 
a fourth parameter, the Reynolds number, is small enough that it can be neglected. 
Using the numerical methods discussed below, we could easily extend the relationship 
between Ca and G to include the effect of a non-zero Reynolds number. 

Bretherton (1961) determined a relationship between Ca and G for very small 
values of the capillary number and concluded that the error approached 10 % when 
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FICUHE 1. Typical bubble profile, Ca = 5.0 x 

Ca was equal to  8 x lo+ by estimating the neglected terms in the approximations. 
The solution was found by examining the shape of the bubble in two different regions. 
For Ca < 1, there is an outcr region away from the wall of the tube where the viscous 
terms are not important. The static profile for the cap of the finger is a function of 
G and can be determined numerically for different values of G .  Between the static 
profile in the outer region and the downstream region where there is a thin film of 
constant thickness on the wall of the tube, there is a transition region where the 
viscous terms arc important. I n  this region, the lubrication approximation is used 
to simplify the equations. The solutions in the two regions must now be matched in 
an overlap region. Bretherton concluded that only cap profiles with G > 0.842 could 
be matched to a solution in the transition region. For Ca 4 1, he found the following 
relationship between Ca and G :  

(1) 

The bubble only rises when G is greater than the threshold value of 0.842. Singular 
perturbation methods and matched asymptotic expansions could have been used to 
formalize Bretherton's approach. This has been done by Park & Homsy (1984) for 
the case of a two-dimensional finger moving through a horizontal channel in which 
the force of gravity is neglected. 

In  this paper, we examine the shape of the finger and its dependence on G for values 
of the capillary number in the range 1 x < Ca < 1 x lo-'. As Bretherton 
mentions in his paper, these values are of greater practical interest than the very small 
values for which (1) is valid. We compare the results a t  the lower end of the interval 
with thc results of Bretherton. 

G-0.842 - 1.25 Cai+2.24 Cak 
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2. Formulation of the problem and method of solution 
The equations that describe the flow of the viscous fluid as it drains from the tube 

are the conservation equation, V 
u,+v,+- = 0, P a )  

and the Stokes equations, 

w,,+wrr+-ur-- . r r2 "I 
We choose a reference frame in which the finger is stationary. In this reference frame, 
the boundary conditions on the tube r = b are given by 

u = - u ,  v = o .  (3a ,  b )  

In addition, the normal velocity condition and tangential and normal stress 
conditions must be satisfied on the surface of the finger x = h(r). These conditions 
can be written 

where the curvature terms are 

=- -4, - 1 - - -4 1 - 
R, ( l + h : ) t '  R, r ( l+h:) t '  

As x+- co, the pressure tends to a constant and the velocity of the fluid in the 
thin film between the finger and the wall, fib < r < b, is given by 

b2-r2+2/32b2 log 

v+o. ( 5 b )  

This expression for u is the solution of (2  b )  which satisfies boundary condition ( 3 a )  
and interface condition (4b) .  As x+m, we get 

u-t-u, v- to ,  ( 5 c ,  4 
which is just the velocity of the moving reference frame given in (3a ,  b ) .  Using (5a, c )  
and conservation of fluid, we get the following analytical relationship between the 
three parameters Ca, G,  and p which were discussed in the introduction: 

_ -  Ca 1-4p2+3p4-4P4 logp - 
G 8aZ 

Notice that as the rate of rise of the finger decreases (Ca+O), the finger fills the tube 
( / 3 + 1 ) ,  but G is left undetermined. Equation (6) is used to eliminate G from the 
dimensionless forms of (2)-(5). They will now only depend on the parameters p 
and Ca. 
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For each value of Ca, we determine the shape of the finger and the value of B by 
numerically solving (2 a-c) with the appropriate boundary and interface conditions 
(3)-(5). Knowing B as a function of Ca, we can now determine the relationship between 
G and Ca. 

To solve the free boundary problem for a given value of Ca, we begin with an 
approximate shape for the interface profile. If the value of Ca is very small, we can 
use Bretherton’s solution; otherwise, we increase the value of Ca in small increments 
using the interface shape calculated at the previous value. Since the shape of the 
interface is fixed, it is necessary to drop one of the interface conditions (4a-c). Usually 
either the normal velocity condition (4 a )  or the normal-stress boundary condition 
(4c )  is dropped. This extra condition is then combined with an iteration method that 
is repeated until it  converges. The rate of convergence of the method or divergence 
will depend on the choice of the iteration procedure, the mesh size of the grid, and 
the discretization of the partial differential equations. Silliman & Scriven (1980) 
determined the interface shape for the two-dimensional discharge of liquid from a 
sharp-edged slot using the two different approaches. They found, using a different 
iteration method to the one discussed below, that for small values of Ca the 
convergence is faster if the normal-stress boundary condition is dropped and for large 
values of Ca the convergence is faster if the normal velocity condition is used to 
determine the shape. Since we are primarily interested in small values of Ca, we drop 
the normal-stress condition. 

The fixed domain problem is solved using finite difference methods on a composite 
mesh composed of a curvilinear grid which follows the curved interface, and a 
rectilinear grid which is parallel to the wall of the tube. A typical curvilinear grid 
has 55 gridpoints along the interface and 7 gridpoints perpendicular to the interface. 
A typical rectilinear grid has 40 points in the x-direction and 30 points in the 
y-direction. Many of the rectilinear gridpoints are located in the interior of the finger 
and are not used in calculating the solution. The curvilinear grid is used to get 
accurate results for the fluid flow near the interface which are needed for the iteration 
procedure. The two grids overlap in the interior of the fixed domain. Interpolation 
equations are used to connect the solution on the two overlapping grids. The use of 
overlapping grids can be easily applied to problems with very complex domains. This 
technique is also flexible enough to allow for stretched grids so that the number of 
grid points is greatest in regions where they are needed most. For complete details 
of this procedure, see Reinelt & Saffman (1985) or Kreiss (1983). 

Once the solution is determined on the fixed domain, we substitute the results into 
the normal-stress boundary condition (4c).  The shape of the finger is now changed 
to satisfy this condition to within a given tolerance. In  changing the shape of the 
free boundary, it is efficient to express the shape of the interface using as few 
parameters as possible. This speeds up the iteration process discussed below. The 
following function of f  is used to describe the shape of the interface. 

z = k 1 log { [ 1 - (31  [ 1 + (;);i cj qj (;)I}, (7) 

where 0 < f < p. Here, 5 and f are the original variables scaled by the tube radius b.  
The parameters p, c,,, cl,. . . , c, determine the shape of the finger. The log term 
and the first term in brackets takes into account the asymptotic behaviour of the 
shape of the interface as 5+- 03 

f - p- A exp (k5). (8)  
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The decay rate k in (7) and (8) is determined by an analytical expansion of the solution 
as Z+- 00. This expansion is described in the next section. The functions Tzjl are the 
even Chebyshev polynomials. They are chosen because it is expected that the series 
in (7) will converge rapidly given the distribution of gridpoints along the finger. By 
this we mean that there are many more gridpoints near 8, corresponding to the 
gridpoints on the sides of the finger, than near the tip of the finger at F = 0. This is 
characteristic of the Chebyshev abscissm. The above expansion works well since we 
only need eight parameters (m = 6). The problem is now reduced to finding the values 
of these eight parameters that best satisfy the normal-stress condition. 

The problem was also solved at a number of different Cu values using eleven 
parameters (m = 9). These additional three parameters were all O(lO-s) or smaller. 
Including these terms did not change the first five significant digits in the value of 
the finger width 8 used to determine the relationship between the capillary number 
Cu and the Bond number G. The change in shape of the interface profile was also very 
small. 

To determine the values of the parameters that best solve the normal-stress 
condition, we perturb each of their initial values independently. This requires 
constructing a new curvilinear grid and solving a new set of equations on a fixed grid 
for each perturbation. The computing time needed to construct the new grids is a 
small percentage of the time used in the overall problem. The time needed to solve 
the new equations can be greatly reduced by observing that the new equations are 
just perturbations of the original equations. By using the LU decomposition of the 
original equations and their solution, we can solve these new sets of equations using 
a couple of forward and backward substitutions, see Reinelt t Saffman (1985). 

The above solutions are now used to calculate the Jacobian of the normal-stress 
boundary condition (4c) with respect to the parameters p, co, cl,. . . , c,. This leads 
to a set of linear equations equivalent to the equations one would get using Newton’s 
method except that the number of equations, equal to the number of gridpoints on 
the interface, is much greater than the number of parameters; thus, these equations 
are solved in a least-squares sense. This means that the parameters are chosen such 
that the error in solving the normal-stress boundary condition at each gridpoint on 
the interface is minimized with respect to the Euclidean norm. For each value of Cu, 
the entire procedure requires only three or four iterations before the correct interface 
shape is found. 

3. Determination of the decay rate k 
The expansion of the interface given in (7) involves the decay rate k which is 

determined analytically in terms of /3, Cu, and G by examining the asymptotic 
behaviour of the solution as z+- 00. To accomplish this, we introduce the stream 
function +(z, r )  which is related to the velocity components by 

1 
r u = -+v 

1 
r 

2, = --$ 

This allows us to rewrite (2u-c) in terms of a single fourth-order equation for $ 

E4$ = 0, (10) 

where 
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As x+- 00, the asymptotic shape of the finger profile given in (8) is 

r-pb-bAexp - ,  

and the stream function y? has the asymptotic expansion 

(12) 

The function S,(r) is determined by integrating (5a)  using (9a) 

S,(r) = -- '' [ +b2r2-- ~4 + pb2 {r2  log (i) - +r2 ]] - 4 Ur2 + constant. (1  3) 

The constant is specified by setting $+ equal to zero on the interface (i.e. S,(pb) = 0). 
To get an equation for h',(r), we substitute the expansion for y? given in (12) into 

(10). The solution involves Bessel functions and is given by 

4P 

S,(r) = BPJ, (F) + CrJ, (f) + Dr2 Y, (5) + Er (F). 
The five arbitrary constants, A ,  B,  C, D, and E in (11)  and (14) are determined by 
satisfying the two boundary conditions on the wall of the tube and the three interface 
conditions. These five equations will only have a solution, other than the trivial 
solution (all constants equal to  zero), if the determinant of the matrix given below 
is equal to zero: 

1 
J, (kP)  0 Yl (kP)  0 
J O W  J,(W Y,(kP)  Y,(kP) 

BJ,(k)  YO(4 PY,(k )  JO(k) 
0 2J0(k)-kJ,(k) /3kJo(k) 2 Y , ( k ) - k q ( k )  Pk Y,(k)  

J,W) - IcsJ,(kP) 0 y , ( lcp) -kPY,(kp)  9 (15) [;: 0 

where 

G G 
4Ca 2k2Ca' a, = 1+-(1-p~+2plOgp)-- 

1 G 
, 

G 
4Ca a3 = & (1 + &) - k p  [ 1 + - (1  - p2 + 2p2 log p) - 

This gives us a relationship between k ,  p, Ca, and G .  The G dependence in the 
relationship between the four parameters is eliminated by using (6); thus, the decay 
rate k given in (7) will depend only on /3 and Ca. 

The matrix given above is similar to the one given by Cox (1962) who performed 
experiments on driving a viscous fluid out of a horizontal tube. The only difference 
occurs in the entries a,, a2, and a3 which now include the effect of gravity. A more 
detailed derivation of the above matrix is given by Cox. In  addition, as Ca+O which 
corresponds to /?+ 1 from (6), we get the asymptotic result 

k - (s)', 



Rate of long bubble rise in a vertical tube 563 

6 

5 

4 

G 
3 

2 

1 

0 
I I I I I I I I I 

0.02 0.04 0.06 0.08 0.10 
Ca 

FIGURE 2. The Bond number C = pgbg/T as a function of the capillary number Ca = ,uU/T. 
-, numerical result; ---, Bretherton's perturbation result. 

after very tedious algebra. This result checks with the perturbation result of 
Bretherton. 

4. Results 
The problem is solved for values of the capillary number in the range 

1 x lop4 < Ca < 1 x lo-'. In $2, we discussed the numerical solution of the differen- 
tial equations which gives B in terms of Ca and through (6) gives the Bond number 
G as a function of the capillary number Ca. Plots of G and /3 versus Ca are given in 
figures 2 and 3 respectively. The broken line is a plot of G versus Ca using the 
perturbation result of Bretherton. Notice that the numerical and perturbation results 
are very different except when Ca is nearly zero. This was expected because the 
perturbation result is only valid for very small values of Ca. 

To make a better comparison between the two results as Ca+O, we plot G versus 
Ca using a logarithmic scale for the capillary number (see figure 4). The actual values 
of Ca for which G and the finger profile were determined are also shown. In this plot, 
it  seems clear that the numerical result approaches Bretherton's result asymptotically 
as Ca+O. It should be noted that even when Ca = 1 x the difference between 
G and the value of 0.842 at which the finger will no longer rise is still on the order 
of lo-'. This is because the perturbation expansion contains fractional powers of Ca; 
thus, extremely small values of Ca are required to make the right-hand side of (1) 
small. This also means that the finger rises very slowly until G reaches about 1.2. As 
mentioned in the introduction, these results for the draining problem are also a valid 
approximation for long bubbles rising in vertical tubes. 

The mathematical methods discussed above worked well in the treatment of this 
problem. The composite mesh is able to provide an accurate solution near the 
interface so that the correct shape of the finger can be determined. This method also 
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FIGURE 3. The finger width /3 as a function of the capillary number Ca. 

G 

FIGURE 4. G v8. Ca (Cu plotted on a logarithmic scale). -m--, numerical result; ---, 
perturbation result. 

has the advantage that i t  can include the convective terms without much difficulty 
unlike boundary integral methods which are often used to  solve free surface creeping 
flow problems, see for example Youngren & Acrivos (1976). This would allow us to  
find the dependence of the shape of the finger and the rate at which it rises on both 
G and the Reynolds number. 
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